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SYNOPSIS 

A simplified probabilistic method of seismic analysis is 
reviewed and its application to floor response spectra gener-
ation is demonstrated through an example of a seismic analysis 
of a soil-founded nuclear power plant structure. The earth-
quake input is represented as a limited duration stationary 
random process with a power spectral density function derived 
from the USNRC Design Response Spectrum. In addition, a 
Kanai-Tajimi spectral density shape function is studied as a 
representation of earthquake input. The results of the random 
vibration approach are compared with those of the time history 
method. It is seen that the probabilistic method provides 
adequate estimate of floor response spectra for design purposes 
and requires less computational effort than time history 
methods, thus enabling one to economically perform various 
parametric studies and reduce overall analysis costs. 

RESUME 

On resume une methode simple d'analyse sismique. Pour fin de 
comparaison on simule un tremblement de terre come processus 
algatoire ayant une ampleur variable selon une fonction de forme. On 
demontre que les resultats du comportement d'une centrale nucleaire 
selon les deux methodes sont de memes grandeurs. 

445 



446 

Manas K. Chakravorty obtained his Sc.D from M.I.T, Cambridge, 
Mass., in 1972. He is currently principal engineer of the 
Washington Public Power Supply System, Richland, Wash. He is 
a Member of ASCE and EERI. 

Albert Y.C. Wong obtained his Ph.D from the University of 
Illinois, Urbana, Ill., in 1973. He is currently a Structural 
Engineer in the Engineering Mechanics Division of Stone & 
Webster Engineering Corporation, Boston, Mass. He is a Member 
of ASCE and ACI. 

David C. Foster obtained his Ph.D from the University of 
Massachusetts, Amherst, Mass., in 1973. He is currently the 
Supervisor of Projects in the Engineering Mechanics Division 
of Stone & Webster Engineering Corporation, Boston, Mass. He 
is a Member of ASCE. 

INTRODUCTION 

Major critical structures of power plants, communication 
centers, and hospitals provide support for equipment and 
systems whose continued function after an earthquake is often 
essential to the public welfare and safety in providing life-
line services for near and long term recovery periods. For 
earthquake design and qualification of safety-related equipment 
and systems, seismic input is often specified in terms of 
floor response spectra. Such floor response spectra are used 
in conjunction with either a dynamic modal analysis or an 
equivalent static method to qualify operability or structural 
integrity of designs. 

Building floor response spectra have been typically generated 
by both semi-empirical(1) and deterministic (time history) 
methods. Semi-empirical methods can produce satisfactory 
results for certain limited situations, but their widespread 
use for all applications introduces uncertainties that may not 
be acceptable where a high degree of reliability and safety 
must be assured. Time history methods have been used extensively 
in the seismic design of nuclear power plants where it has 
become standard practice to specify the building seismic input 
in terms of an "artificial" earthquake record whose spectra 
must envelope a specified plant design ground response spectra. 
The computational effort and cost involved in the development 
of this record can be extensive and the time history analysis 
of a structure to develop floor time histories and floor 
response spectra increases this cost significantly. 
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Since earthquake records exhibit characteristics of a random 
process, it is also possible to determine building seismic 
response and floor response spectra by means of a probabi-
listic approach. Although seemingly an attractive alternative 
to other approaches, its practical use in seismic response 
applications has, in the past, been somewhat limited because 
of the complexities associated with the treatment of the 
nonstationarity of the input and response processes as well as 
the treatment of the distribution of the maximum response. 
Recently, however, studies by various investigators (2,3,4) 
have developed methodologies for dealing with this nonsta-
tionarity and for providing a rational basis for adopting a 
more simplified approach based on time invariant assumptions, 
thus making the method more attractive for practical appli-
cations. 

It is the purpose of this paper to review the application of 
probabilistic methods to seismic analysis and to use these 
methods to develop floor response spectra for a soil-founded 
concrete structure and compare them with floor response spectra 
developed from present state-of-the-art time history methods. 

BACKGROUND 

Input - Response Relation  

A block diagram of the input - response process associated 
with a structure-equipment system in terms of a time history 
approach is shown in Figure I. For the seismic analysis of 
light equipment within a structure, it is common to treat the 
structure and the equipment separately. The structural 
response at a particular point may be viewed as the input 
excitation to the equipment mounted at that point. The 
buildingequipment system is excited by a ground motion, U(t), 
of specified duration, s, which can be represented by a weakly 
stationary, zero mean Gaussian process having a power spectral 
density (PSD) function Ga(w). A formal definition of a power 
spectral density function can be found in Reference 5, but 
simply stated it can be viewed as the distribution of the 
power of the ground motion with respect to its frequency 
content. Having defined the earthquake input in terms of a 
PSD function, the input-response process for a random vibra-
tion approach can be represented as shown in Figure 2. This 
section will discuss the process in Figure 2 and present a 
method for its solution. 

Mean Square Acceleration Response  

The dynamic behavior of a single degree-of-freedom oscillator 
z(t), relative to its point of support, can be described by 
the following second order differential equation: 
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Z (t)  # 2 re  4). et) # (E) (1) 

where 44 is the natural frequency of the oscillator, $ is 
the oscillator damping and X(t) is the acceleration response 
of the structure at the point of oscillator support. If the 
primary structure is not too lightly damped, the time vari-
ation of the frequency content of the response X(t) toward the 
end of the input ground motion is often not significant and 
its energy content can be conservatively represented by a 
stationary power spectral density function as follows: 

Gi  CwJ = 6,7 a)) a (WI Z (2) 

where IHOJA
2 
 is the squared amplitude of the transfer 

function of the primary system. 

Due to the characteristic low damping of building-mounted 
equipment and systems, the response z(t) in Equation 1 may 
never achieve a steady state response. It is therefore 
necessary to define its response by means of a time dependent 
spectral density function, G,(44). The time dependent power 
spectral density function, G,(0,t), of a single degree-of-
freedom oscillator can be expressed as(6): 

6;(4),e) 6;;65))//4(4),t)/ 2 (3) 

1 wherelH,W,012  is the squared transient transfer function for 
a single degree-of-freedom oscillator representing the secon-
dary system and can be approximated by: 

114(40/1=1a/2- z  2* r  4 21-1 
e ) 1 eti4 (4) (4) 

in which gel  =Te fy-exp ( - r I, t )7  -I and ge  is 
the oscillator damping. The transfer function Ille(w,t)Iz 
approaches the steady state value Ille(co)/ 2  as t approaches 
infinity. 

The mean square pseudo-acceleration response, cre  , of the 
single degree-of-freedom oscillator is then obtained at t=s by 
the following expression: 

(Te2 = (4):S.ei (4.),.S1 ea) 444 "G,(6))//04s)/24(6) (5) 

In general, an exact evaluation of Equation 5 will require 
numerical integration. However, for a smoothly varying spec-
tral density function, GR(4)), Equation 5 can be approximated 
by(6): 

mss = we  Gx  (4)141-1.71`Se  Gje6I 04.0014) (6) 

1 
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where gls  = C1- ex,o(-2teeJe S)1-1. 

Equations 6 and 2 provide a suitable means for the computation 
of the mean square pseudo acceleration response of a single 
degree-of-freedom oscillator for a specified spectral density 
input function. Note that in Equation 6 the contribution of 
the second term is insignificant for single degree-of-freedom 
oscillators of low frequency but becomes significant for those 
with higher natural frequencies. 

Primary System Transfer Function H(w)  

It is seen from the previous discussion that the estimation of 
the mean square acceleration response, crez, requires the 
evaluation of the acceleration transfer function H(w) of the 
primary structure. In order to obtain H(w), it is necessary 
to construct a lumped parameter dynamic model of the primary 
system. The primary system transfer function H(w) can then 
either be obtained directly by solving the dynamic equation of 
motion in the frequency domain (7), or by combining the indi-
vidual modes from a normal mode analysis. In the frequency 
domain solution, the transfer function is obtained by solving 
at each desired frequency a system of linear algebraic equa-
tions. If the primary structure is analyzed by the normal 
mode method, then the acceleration transfer function with 
respect to a specific location within a primary structure can 
be expressed as (2): 

/MO/ = I 202(ce-460i/111/,eall 
If 

wql ri. „./ Clx " //k"
(7) 

jv  

where 6. is the j*  modal ordinate at the point of 
interest, n is the total number of degrees of freedom,/ is 

h 
the participation factor in the jw  mode, and cad is the 
. f j natural frequency. H)(61) is the complex frequency response 
function of the j' mode and is given by: 

/-6a,))=-1 ad:11024.2i ()./4")-i (8) 

in which S.' is the damping in the j4  mode and H:(0) is the 
complex conjugate of H,(o). 

Although Equation 7 has the form of a double summation, it has 
been shown (2) that for a lightly damped system with well 
separated modal frequencies the main contribution to response 
comes from the terms for which j=k. Thus Equation 7 can be 
further simplified to: 

INawl 2  j4 r 0.f.  12 (4)-4.6.frartri /#44)/2 (9) (4  ; I JJ 
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Note that in the derivation of the above expressions the 
stationarity assumption is implied. However, for very light 
damping, the transient response buildup in a multi-degree-
of-freedom system can be approximately accounted for by 

0.912in Equation 9 with a time dependent transfer 
function 111;(0,t)12  of the form presented in Equation 4 withoe  
replaced by 1j and Se  replaced by 5.;  . 

Spectrum-Compatible Power Spectral Density Function 

It has been shown that the evaluation of the mean square 
acceleration response, al , is dependent on the input power 
spectral density (PSD) function Gi;00. However, in seismic 
design the earthquake input is often specified not in terms of 
a PSD function, but rather in terms of a set of smooth design 
response spectra. Therefore, it is desirable from a practical 
standpoint to construct a PSD function compatible with the 
site design spectra. 

Based on the principles of random vibration, Vanmarcke and 
Cornell(8) and Vanmarcke(6) have proposed a workable metho-
dology to construct a spectrum compatible PSD Function. In 
this method, the maximum relative response, yew, for a 
single degree-of-freedom oscillator corresponding to a non-
exceedance probability, pa , and a strong motion duration, s, 
is expressed as a multiple of, acs), the standard deviation at 
time, s, of the oscillator response, and a peak factor, r9  , so 
that: 

Y.0.= t; 0  (s) (10) 

The physical interpretation of this relationship is shown in 
Figure 3. A determination of the peak factor requires the 
solution of the first passage problem (6, 9, 10), an exact 
solution of which is not yet available. However, good prac-
tical estimates have been proposed by various investigators 
(6, 11) and it is possible to estimate the peak factor, r9, 
for a high barrier level by: 

= 7/24/1-  2 r, s/in Wag 

where 4 is the mean rate of zero crossing of the response 
given by: 

Y = al  /2 7/ 

and 14, is the oscillator natural frequency. 
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Assuming now that a value from a design response spectrum is 
equivalent to the maximum response (provided by Equation 10), 
the following relationship, analogous to Equation 6, can be 
obtained: 

(SliffA004):=6;i;64J44(k4/#3-0%%0011v 

where SI = S" C ex,o (-2 .N4  4)7 -I and Sa  is the pseudo-
acceleration response spectrum ordinate at a frequency wn 
and damping value r . 

Equation 12 forms the basis of an iterative scheme, as 
suggested by Vanmarcke(6) where at a frequency 44 the 
integral of Ga(w) up to a frequency of 44 is evaluated 
numerically and the next ordinate of the PSD function Ga(ae) 
is then evaluated from Equation 12. Note that for very low 
frequencies the contribution of the integral in Equation 12 is 
negligible. 

Evaluation of the spectrum compatible PSD function, Gii(0),is 
not unique since it depends on a chosen duration, s, of strong 
motion shaking, the damping value of the prescribed design 
response spectrum,r , and the nonexceedance probability, p9. 

The duration of strong seismic shaking, s, is a function of 
various seismic parameters such as earthquake magnitude, 
source distance, and frequency content. Based on the obser-
vation of seismic records, Bolt(12) has provided a practical 
guide for its determination. Studies have also been performed 
by Vanmarcke and Lai (13) giving recommendations for the 
strong motion duration of earthquakes. 

Selection of the parameter, , , is not unique because 
seismic input is often specified in terms of a set of response 
spectra, each curve corresponding to a separate damping value, 
rather than a single response spectrum. When this is the 
case, the response spectrum and damping value corresponding to 
one of the higher damping levels should be used. This is 
because the estimate of the peak factor, r9, as provided by 
Equation 11, tends to overestimate the peak response for a 
narrow band process (a characteristic of the response of a 
lightly damped oscillator); this will yield a less conserv-
ative estimate of the resulting PSD input function than when a 
response spectrum representing lower damping is used. 

Selection of a value for the probability of nonexceedance, pg , 
will depend to a great extent on the confidence level one has 
in the prescribed design response spectra. When based on 
extensive site studies or on generic response spectra derived 
from intensive investigation, such as those set forth 

(12) 
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by the USNRC in Regulatory Guide 1.60 (14), conservative 
results may be obtained by treating such spectra as median 
values and using a nonexceedance probability level of p

9 
= 

0.5. 

Kanai-Tajimi Power Spectral Density Function  

For wide band excitation processes Kanai and Tajimi (15, 16) 
have proposed the following form for a PSD function: 

G4•Cc4) = fp # r,(0/09)2.76,0-(0/4/.9)924.#4z(642/ (13) 

where ca9  and r9 are considered as dominant ground 
frequency and damping and Go  is a measure of intensity of 
shaking. The values of 6.4 = 4fland r9  = .60 have been 
recommended for firm soil sites. If the intensity of shaking 
at a site is known the parameter G. can be evaluated from the 
following relation: 

6: = 0-42/ X4.19 (/44/r 9z) (14) 

where 042  is the expected mean square acceleration at the 
site and can be estimated (6) from the relation: 

O =i4//1/iA,(2.8.12.0#) (15) 

where A is the expected peak ground acceleration,d2 = 2.1(09 
and s is the expected duration of strong motion shaking. As 
will be shown later, in the absence of a prescribed design 
response spectrum, the Kanai-Tajimi PSD normalized to an 
expected ground acceleration level can provide a conservative 
estimate of equipment response for structures founded on firm 
soil. Equation 15 corresponds to a p9  value of .5. 

Prediction of Floor Response Spectra  

Having determined PSD functions for both the seismic input and 
building response along with appropriate transfer functions, 
the building floor response spectra may be determined from 
random vibration principles from the following: 

se = re ai (16) 

where Se is the maximum acceleration for a single degree-
of-freedom oscillator of frequency 44 , 06 is the root mean 
square acceleration response, obtained from Equation 6 and 
reis the oscillator peak factor which can be evaluated from a 
relationship similar to that given by Equation 11: 

1-e  = 3/z/.714ks/r11,04cg (17) 
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where pe  is the desired nonexceedance probability level of the 
equipment response. Equation 16 together with Equation 6 
provide the basic framework for floor response spectra pre-
diction for a specified probability level pe . 

PRACTICAL APPLICATION AND RESULTS 

In this section, examples of floor response spectra obtained 
from both the random vibration and time history methods for a 
soil supported structure are presented. Figure 4 shows the 
dynamic model of a containment - annulus building for a 
nuclear power plant where the superstructure is idealized as a 
lumped mass system and the subgrade is represented by 
frequency dependent soil springs obtained from a finite 
element soil structure interaction analysis. An idealized 
iterated shear profile of the subgrade is shown in Figure 5. 
The primary system transfer functions are obtained by solving 
the equations of motion in the frequency domain. Figure 6 
shows the absolute value of the acceleration transfer 
functions at locations A and B of the primary structure. The 
design ground response spectrum is that shown in Figure 7. 
This spectrum was obtained by normalizing the USNRC Regulatory 
Guide 1.60 Design Spectrum, for 10 percent damping, to a peak 
ground acceleration of 0.5g. The duration of strong motion 
shaking was assumed to be 15 seconds. 

For the random vibration approach, the spectrum-compatible PSD 
function was obtained by iterating on the design response 
spectrum of Figure 7. The results of this iteration are shown 
in Figure 8. For comparison purposes, spectrum compatible PSD 
functions are shown for p equal to both 50 percent and 90 
percent nonexceedance values. Also shown is the Kanai-Tajimi 
PSD function (Ile  = .5 ) as calculated from Equation 13 and 
normalized to .5g maximum ground acceleration. 

As can be seen from Figure 8, the spectral ordinates of the 
Kanai-Tajimi PSD function in the lower frequency region (less 
than 2.0 cps) are somewhat larger than that of response spec-
trum compatible PSD functions. However, for higher frequency 
regions (greater than 2.0 cps) the reverse is true. This may 
be due to the fact that the shape of the NRC response spectrum, 
from which the compatible PSD functions were derived, is based 
on actual earthquake records that are representative of both 
soil and rock sites, whereas the Kanai-Tajimi PSD function is 
representative of soil sites only. Also, soil sites can 
exhibit radiational damping values on the order of 70 to 90 
percent whereas the Kanai-Taijmi PSD assumes a damping value 
on the order of 60 percent. However, it should be noted that 
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it is not necessary to have a unique relationship between the 
two types of PSD functions. The shape functions are presented 
here only to indicate their respective distribution and magni-
tude of spectral content. 

Having determined the input PSD and the system transfer func-
tions, the 50 percentile and the 90 percentile nonexceedance 
floor response spectra at locations A and B for equipment 
damping of 5 percent are computed from Equation 16. These are 
shown in Figures 9 and 10 for a p

9 
of .5 and Figures 11 and 12 

for a p9  of .9. 

For the time history approach, an artificial time history, 
whose response spectrum envelopes the design response spectrum 
of Figure 7, was used for the analysis. The time history of 
the floor accelerations were obtained by the Fourier transform 
technique using the Cooley-Tukey(17) fast Fourier transform 
(FFT) algorithm. Floor response spectra were then computed 
from the floor time histories. For purposes of comparison, 
the results of this method have been shown with the PSD 
results in Figures 9 through 12. 

An inspection of Figures 9 and 10 for p9  = .50 indicates that 
the 90 percentile floor response spectra obtained from a 
random vibration approach, in general, exhibits good agreement 
with the time history results. The time history results 
indicate peaks and valleys at various frequencies as opposed 
to the random vibration results which exhibit a smooth curve. 
This is partly due to the fact that although the time history 
generated response spectrum envelopes the design spectrum (a 
requirement of the USNRC for nuclear power plants), the 
enveloping is not equal at all frequencies and significantly 
higher energy levels exist at certain frequencies of the time 
history over that indicated by the design spectrum itself. 
Also, it should be noted that the response spectrum of two 
apparently similar time histories which envelope a design 
spectrum will indicate peaks and valleys at different natural 
frequencies. The 50 percentile floor response spectra in 
Figures 9 and 10 represent a lower design load level and 
hence, a somewhat greater design risk, yet the maximum 
difference between the 50 percentile and 90 percentile curves 
is on the order of only 25 percent. 

The second value of nonexceedance for the ground input, 
p = .9, was assumed in this study because of the fact that 
the USNRC Design Response Spectra is based on response spectra 
studies of actual earthquake records and is representative of 
a level equal to a normalized mean value acceleration plus one 
standard deviation. Assuming a Gaussian distribution, this 
corresponds to a probability of nonexceedance of 84 percent 
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Thus the floor response spectra developed by random vibration 
methods with p9  = .9 approximately reflect the energy level 
implied in the USNRC Design Response Spectra. Figures 11 and 
12 compare this spectra with spectra developed by the time 
history approach. These results are interesting because they 
demonstrate the additional safety margin inherent in floor 
response spectra developed in compliance with the USNRC 
Regulatory Guide 1.60. 

Although not shown here, a study into the effect of the 
duration of strong motion shaking on the floor response 
spectra was performed by selecting an alternative duration of 
s = 10 seconds. The difference in the magnitude of the floor 
response spectra, between s = 10 seconds and s = 15 seconds 
was not significant. 

A comparison of floor response spectra obtained from a time 
history analysis and a random vibration analysis using the 
Kanai-Tajimi PSD function, as shown in Figure 13, indicates 
that the use of Kanai-Tajimi PSD function provides, for this 
example, conservative estimates of floor response spectra. 
Thus in the absence of a specified design response spectra or 
power spectral density function, a Kanai-Tajimi PSD function 
normalized to a specified ground acceleration level could 
provide an adequate estimate of floor response spectra for 
soil supported structures. 

CONCLUSIONS 

In this paper, a probabilistic method of generating floor 
response spectra has been reviewed and its application to 
floor response spectra generation has been demonstrated by 
means of a seismic analysis of a soil-founded nuclear power 
plant structure. The results obtained using the probabilistic 
method stand in good agreement with those obtained using the 
time history approach. The probabilistic method is simple and 
requires considerably less computational effort than the time 
history method. Also, the analysis cost using the probabi-
listic method is independent of the earthquake record 
duration, while analyses costs using a time history approach 
are a direct function of earthquake record duration. Because 
of cost and time savings available with the probabilistic 
method, it is possible to make greater use of parametric 
studies in plant arrangements and to more completely study the 
effects of variations in soil and structural properties on 
seismic response. In addition, the method provides a simple 
technique for determining plant seismic design loads for 
different levels of seismic risk. 
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The study was by no means meant to be an all inclusive 
comparison between time history and probabilistic methods. It 
does, however, indicate possibilities available both in the 
design of nuclear power plants, where preliminary studies 
could establish appropriate values of p1 , pe  , and r, thus 
allowing plant wide use of a probabilistic approach, and in other 
areas where a simple but effective method for determining seismic 
response is required to protect public and private facilites. 
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